
Computer Programming
University Of Salahaddin
Engineering College
Electrical Engineering
2009-2010

Study Skills Tips
You have to develop many different types of skills to be a

successful student. What skills do you want to work on?

2

Study Skills
1. Find your own quiet place where you can concentrate on your

homework.

2. Sit in a comfortable chair (not too comfortable, though or you
could end up asleep).

3. Avoid distractions like the TV and try to ignore the telephone. Your
friends can leave a message!

4. Play quiet background music. It might help you stay focused.

5. Study with a friend or a group of friends. Compare notes and ask
each other questions.

6. Know your learning style and study in a way that best matches it.

7. Take short but frequent breaks.

8. Relate what you're studying to things you already know. This helps
you remember information more easily.

9. Start with the most difficult tasks or assignments to focus
maximum brainpower on the toughest Then move on to the easier
tasks.

3

Study Skills (cont)

1. Plan to spend more time (not less) on the
subjects that are harder for you.

2. Focus on the quality of your study time. It's
much more important than the quantity.

3. Get into the habit of studying every day.
4. Determine your best study time and plan to

study at that time every day.
5. Think of homework as practice, not work. It

takes practice to get better at sports or
music or cheer leading School is the same.

6. Ask questions if you're not sure about
something. Asking questions is one of the
most effective ways we learn!

7. After each study session, try to recall the
main points and as many details as possible.

4

Organizational Skills
1. Use outlines, charts, or flashcards to help you organize and

learn new material. You'll be reviewing the material as you
make these tools. And, you'll have them to use later when it's
time to study for tests.

2. Create a planner to keep track of homework assignments,
tests, and projects. Write in your planner every day so it
becomes a habit!

3. Organize your notes and homework assignments by subject
in separate notebooks and folders.

4. Keep a "To Do" list. Write down things you need to do. Then
decide what you need to get done right away and what can
wait until later.

5

Time Management Skills
1. Plan ahead and stick to a schedule.
2. Decide what you want to accomplish and how long you will

spend on each subject or assignment.
3. Break your workload down into manageable chunks.
4. Don't procrastinate (that's a big word that means putting

things off).
5. Be aware of things that distract you or waste your time, and

keep them to a minimum.

6

Test Taking Skills
1. Ask what type of test you'll be taking (essay, multiple choice,

true/ false, matching, etc.). It's likely that test questions will
be similar to homework you have done.

2. Don't cram. It's OK to spend extra time studying but don't try
to learn everything in one night.

3. Get plenty of rest the night before test day.
4. Don't panic. If a question is too hard, skip it and come back to

it later.

7

Note Taking Skills
1. Focus on the main ideas. Don't try to write down everything

the teacher says.
2. Use your own words.
3. Keep your notes organized. They will be as important as the

textbook.
4. Review your notes every day. This will make things easier to

remember when it's time to study for the test.

8

Stress Management Skills
1. Don't sweat the small

stuff. Prioritize your
activities and focus on
the most important
ones.

2. Exercise. It takes your
mind off things that
are bothering you.

3. Take care of yourself.
Eat right and get
enough sleep.

4. Avoid drugs. They do
not reduce stress,
they hide it

9

Take a Moment
If she can. You can. Could you?

10

What we learn

We will begin the study of the language starting
with the fundamentals of the language and simple
programs; and as we explore more of the language,
we will write increasingly larger programs.

By the end of this year, every student:
• will learn about all the essential programming concepts
• will demonstrate a good familiarity with C++ syntax
• will be able to write reasonably complex procedural

programs

11

How To Solve Problems
1. Define the problem and see if there is a better way to

redefine it.
2. Find the way how human solves it.
3. Write down human’s solution
4. Break down this solution to its original steps and do not

forget simplest thoughts.
5. match every human activity with computer’s tool.
6. If some activity don’t exist directly in computer find

alternatives.
7. Group these tiny computer actions into logically related

functions.
8. Combine these functions in a complete solution.
9. Solution Implementation and Verification

12

Levels of Programming Languages

13

Levels of Programming Languages *

14

Levels of Programming Languages *

Machine Language that the hardware understands
because it is written with 1s and 0s.

At the level above machine language assembly
language where the 1s and 0s are represented by
English like words.

Assembly languages are considered low level
because they are closely related to machine
language and are machine dependent

15

Levels of Programming Languages *

Machine dependent mean a given assembly can be
used on a specific microprocessor.

At the level above Assembly language is high level
language.

High-level language is closer to human language
further than machine language.

An advantage of high-level language is portable
(Independent).

16

Introduction to C++

A program is a sequence of instructions that can be
executed by a computer. Every program is written in
some programming language.

C++ (pronounced “see-plus-plus”) is one of the most
powerful programming languages available. It gives
the programmer the power to write efficient,
structured, object-oriented programs.

17

Introduction to C++

● To write and run C++ programs, you need to have
a text editor and a C++ compiler installed on your
computer.

● A text editor is a software system that allows you to
create and edit text files on your computer.

● A compiler is a software system that translates
programs into the machine language (called binary
code) that the computer’s operating system can
then run.

● That translation process is called compiling the
program. A C++ compiler compiles C++ programs
into machine language.

18

C++ Programming Style

Main structure
C++ program start execution at the beginning of the
main()function. Since a program can have only one
starting point, every C++ language program must
contain one and only one main()function.

#include <iostream.h>
int main (){

program statements;
return 0;

}

19

C++ Programming Style

Comments
Comments are explanatory remarks made within a
program. There are two types of comments in C++:
1.Single line comment by using two slashes //

2.Block comment by using slash and astrisc /* */

//This is comment
#include <iostream.h>
int main (){
/*This program has
Many comments*/

program statements;
return 0;

}
20

C++ Programming Style
Preprocessor Directives
The preprocessor commands are begin with a pound
sign (#) and perform some action before the
compiler translates the source program into machine
code.

Variable names
All the variable names should suggest their use. Tyr
to use meaningful names for variables. This is good
programming as it makes our programs
1.easier to read
2.easier to correct, and
3.easier to change

#include <iostream.h>

21

C++ Programming Style

Indenting
A program should be laid out so that elements that are
naturally Considered a group are made to look like a
group.
One way to do this is to skip a line between parts that
are logically considered separate. indenting can help to
make the structure of the program clearer. A
statement within a statement should be indented.
Brackets
Also, the brackets {} determine a large part of the
structure of a program. Placing each on a separate line
by itself, makes it easy to find the matching bracket.
One pair of brackets is embedded inside another pair,
the inner pair should be indented more than the outer
pair.

22

Variables

In mathematical modeling and computer
programming, we introduce variables representing
abstract notions and physical objects. Examples are
the temperature (Temp), the velocity (V), time (t) ,
period (T), voltage (V)… etc.

Program variables correspond to memory spaces
reserved for storage.

Every variable stored in the computer’s memory
has a name, a value and a type.

The term Variable is used because the value stored
in the variable can change.

23

Variables *

In order to use a variable in C++, its specified must
first declared which of data types wanted to be.

It's Better to “give” variables initial values to let the
program know what to use as an initial value other
wise it will contain a random number and the
results will be unexpected

int a = 5;Data Type

Declaration

Initialization

Identifier

24

Variable Naming

A variable name is called an identifier. An identifier in
C++ can be up to 31 characters long. C++ is case
sensitive, so count is different than Count

Can not begin with a digit.
 (Invalid: 1First)
Can not contain blanks.
 (Invalid: num elements)
Can not contain a hyphen, underscore (_) is OK.
 (Invalid: num-elements)
Special symbols are not allowed.
 (Invalid: cost$, cost!)
Reserved words can not be used as identifiers.
 (Invalid: int, const, float)

25

Variable Naming

A reserved word (keyword) is a word that has a
special meaning in C++. It can not be used as a
programmer-defined identifier.

asm default float public try

auto delete for register typedef

bool do goto return typeid

break double if short typename

case else inline signed union

catch enum int sizeof unsigned

char explicit Long static using

class export new struct void

const extern operator switch while

continue false Private true
26

Data Types

When programming, we store the variables in our
computer's memory, but the computer has to know
what kind of data we want to store in them, since it is
not going to occupy the
same amount of
memory to store a
simple number than to
store a single letter or
a large number.

Type bytes Size Range Precision

bool 1 true or false N/A

char 1 ASCII codes N/A

short or
short int

2 -32,767 to 32,767 N/A

int 4 -2,147,483,647 to
2,147,483,647

N/A

long or
long int

4 -2,147,483,647 to
2,147,483,647

N/A

float 4 10-38 to 1038 7 digits

double 8 -10^308 to
10^308

15 digits

long
double

10 -10^4932 to
10^4932

19 digits

27

Variables

integer Numbers (int)
As we have already mentioned the type int refers to
whole numbers like 37 and –45.

Real Numbers(Double)
Numbers with fractional parts such as 3.56 and 0.112
are of type double or float.(the real numbers in
mathematics). Numbers of type double can have a
precision of up to 15 digits.

int num = 55;
int a = 1, b = -1 , c;
c = 789;

double realNum = -12.43;

28

Variables *

Characters (char)
Computers and C++ not only use numerical values
but they can also use non-numerical values like
characters and strings. Values of type
char include letters of the alphabet, digits, symbols
and punctuation marks. For example:

Notice that character values are placed inside single
quotes.

char letter, symbol;
letter=‘A’;
symbol=‘#’;

29

Variables *

Boolean expressions (bool)
This type was recently added to the language. Values
of type bool are called Boolean expressions and
include only two values: true or false. Boolean
expressions are used in branching and looping
statements.

Important note
As a general rule, you cannot store values of one
type in a variable of another type. This is a good rule
to follow, even though some C++ compilers do not
enforce this type checking.

bool test = true, odd = false, even;
even = false;

30

Constants

Sometimes it is required to have some value
unchanged throughout the program execution. Some
value that does not change in a C++ program is called
a constant. it’s common to use capital letters for
constants. For example:

Or you can use

const double PI = 3.14159265;

#define PI 3.14159265

31

Arithmetic Operators

Usually, arithmetic operators come in between two
expressions as in

expression1 operator expression2
Or operand1 operator opreand2

The operand can be either a single variable/number
or a composite expression. The main C++ arithmetic
operator are the following:

+ for addition
- for subtraction
* for multiplication
/ for division
% for division remainder (Mod)

32

Arithmetic Operators *

For example:

All of the arithmetic operators can be used with
numbers of type int, numbers of type double and
even with one number of each type.
Division Operator (/)
However, if both operands are are of type int, the
result is of type int. if one, or both operands are of
type double, the result will be of type
double.

int computers=10;
int price=7340;
int total=price * computers;

operand1 operand2operator

33

Arithmetic Operators *

When used with one or both operands of type double,
the division Operator, /, behaves as you would
expect: 10/4.0=2.5
But when used with two operands of type int, the
division operator / gives only the integer part of the
division: 10/3 is 3 and not 3.333…

Remainder Operator (%)
The % operator can be used with operands of type int
to recover the information lost when you use / to do
division with operands of type int; for example:

11 divided by 3 is → 11/3 == 3
with a remainder of → 11%3== 2

34

Assignment Statements

Values can be assigned or stored in variables with
assignment statements:

books=34;
An assignment statement is an order, to the
computer, to assign the value on the right-hand side
of the equal sign to the variable on the left-hand
side. The sign (=) is called the assignment operator.
The value on the right-hand side can also be another
variable or expression:

books1=books2;
in an assignment statement, first the value on the
right-hand side is evaluated and then its result is
stored or assigned to the variable on the left-hand
side.

35

Assignment Statements *

C++ has shorthand notation that combines the
assignment operator (=) and an arithmetic operator.
For example:

int hours=5;
hours += 7; //is equivalent to hours=hours + 7;

That is, the new value of the variable hours is equal
to its old value plus the number constant 7.
We can use other arithmetic operators too:

hours -=2; hours=hours-2;
hours /=3; hours=hours/3;
hours *=2; hours=hours*2;
hours %=8; hours=hours%8;

36

Precedence Rules

You can specify the order of operations in C++ using
parentheses as illustrated in the following
expressions:

1: (x + y) * z
2: x + (y * z)

1: the computer first adds x to y and then multiplies
the result by z.
2: the computer first multiplies y by z and then adds
the result to x.
If you omit the parentheses, the computer will follow
the C++ rules of precedence. So, if you wrote x + y
* z, the computer would multiply y by z and add the
result to x. Because * has higher precedence than
+ .(the same is true for / and %)

37

Precedence Rules *

The following list contains the precedence rules for
some C++ operators:

(), [], ., ->, (postfix)++, (postfix)--
unary +(unary), -(unary), ++(prefix), --(prefix), !, sizeof
binary arithmetic *, /, %
binary arithmetic +, -
Boolean operators <, >, <=, >=
Boolean operators ==, !=
Boolean operator &&
Boolean operator ||
assignment =,+=,-=,*=,/=,%=

For example, consider (x+1) > 2 || (x+1) < -3,
this is equivalent to ((x+1) > 2) || ((x+1) < -3)
because < and > have higher precedence than ||.

38

Performing Output

The values of variables, numerical values and strings
of text ,may be output to the screen using cout as in

int books=0;
cout<<books<<endl;
cout<<72<<endl;
cout<<“This is the output”<<endl;

The double arrow signs (<<) are called the insertion
operators.

39

input using cin

In C++, cin is used to input values into variables.
After declaring a variable of type int,

int price;
cout<<“Enter the price:”;
cin>>price;
cout<<“The price you entered is $“<<price<<endl;

in this program extract, first an integer is declared, a
message is also output to the screen notifying the
user of the input value.
When the program reaches a cin statement, it waits
for input to be entered from the keyboard and for this
value to be input into the Variable, the user must
enter a new line.

40

Flow of Control

in the simple C++ program the program consisted of
a list of program statements which were executed
sequentially; one statement after another.
For bigger and more sophisticated programs, you will
need some way to vary the order in which statements
are executed.
The order in which statements are executed is called
the flow of control.
C++ has a number of mechanisms which let you
control the flow of program execution.

First, we will study a branching mechanism that
allows you to choose between two alternative
actions. Then we will discuss loops.

41

Branching (if-else statement)

There is a C++ statement that chooses between two
alternative actions. it is called the if-else statement.
The general form of the if-else-statement is as
follows:

if (Boolean-expression)
yes-statement

else
no-statement

When program execution reaches the if-else
statement only one of the two statements is
executed. if the Boolean-expression is true then the
yes-statement is executed. if the the Boolean-
expression is false then the no-statement is
executed.

42

Branching (if-else statement) *

Example:
Suppose your program asks the user about the
amount of time per week he/she spends on practicing
C++. And you want the program to decide whether
or not this is enough.

#include <iostream.h>
main(){

int hours_per_week=0;
cout<<“How many hours/week do you practice C++? “<<endl;
cin>> hours_per_week;
if (hours_per_week>=4)

cout<<“That’s good ”<<endl;
else

cout<<“That’s not good enough”<<endl;
return 0;

}
43

Branching (if-else statement) *

Sometime, you want your program to test a condition
and if the condition is satisfied the program does
something, otherwise it does not do anything. You
can do this by omitting the else part from the
if-else-statement. For example:

if (grade>=50)
cout<<“The student has passed.”<<endl;

cout<<“……”<<endl;

This is called the if-statement

44

Branching (if-else statement) *

You may want to execute more than one statement
inside an if-else-statement. To do this, enclose the
statements inside brackets { }. For example:

if (grade >=50){
cout<<“ The student has passed”<<endl;
passed-students +=1;

}
else{

cout<<“Student has failed”<<endl;
failed-students +=1;

}
A list of statements enclosed inside brackets is called
a compound statement.

45

Branching (if-else statement) *

The Boolean expression in the if-else-statement is:
hours_per_week>=4

Remember that Boolean expressions or variables
have only 2 values: true and false.
Here, we use C++ comparison operators. Here is the
full list of comparison operators:

Math Symbol C++ Notation

= ==

≠ !=

< <

≤ <=

> >

⋝ >=

46

Boolean Logic

in evaluating Boolean expressions, C++ uses
Boolean Logic principles.
You can combine two (or more) comparisons using
the Boolean Logic “and” operator. For example, the
expression

(x>2) && (x <10)
is true only if both (x>2) and (x<10) Boolean
expressions are true.

Note: && is equivalent to “AND” and || to “OR”.

X Y X && Y

True True True

True False False

False True False

False False False

X Y X || Y

True True True

True False True

False True True

False False False

47

Multi-way if-else statements

An if-else statement is a Multi-way branch. it allows a
program can choose between more than two
alternative actions.
You can do this by nesting if-else statements. For
example, suppose we want to write a game-playing
program in which the user must guess the value of
some number.

cout<<“Guess the number: “;
cin>>guess;
if (guess >number)

cout<<“No, too high”;
else if (guess==number)

cout<<“Correct!”<<endl;
else

cout<<“No, too low”<<endl;
48

Switch-statement
Let’s look at an example involving a switch-statement:

char grade;
cout<<“Enter your grade: “;
cin>>grade;
switch (grade) {

case ‘A’:
cout<<“Excellent.”<<endl;
break;

case ‘B’:
cout<<“Very good.”<<endl;
break;

case ‘C’:
cout<<“Passing”<,endl;
break;

case ‘D’: case ‘E’:
cout<<“Too bad, go study”<<endl;
break;

default:
cout<<“This is not a possible grade”<<endl;

}
49

Switch-statement *

Notice that the constant is followed by a colon. Also
note that you cannot have two occurrences of case
with the same constant value after them since that
would be an ambiguous instruction.

A break-statement consists of the keyword break
followed by a semicolon. When the computer
executes the statements after a case label, it
continues until it reaches a break-statement and this
is when the switch-statement ends.

if you omit the break-statement, then after executing
the code for one case, it goes on to execute the code
for the following case.

50

Loops

Most programs have some action that is repeated a
number of times.
A section of a program repeats a statement or group
of statements is called a loop. C++ has a number of
ways to create loops. One of them is called a while-
statement or while-loop.
main() {

int num_of_greetings=0;
cout<<“How many greetings do you want? ” ;
cin>>num_of_greetings;

while (num_of_greetings > 0){

cout<<“Hello “;
num_of_greetings=num_of_greetings-1;

}
return 0;

}
51

Loops *
while-loop might execute its loop body zero times. if
you know that under all circumstances your loop body should be
executed at least once, then you can use a do-while loop
statement.

The do-while loop statement is similar to the while-loop
statement, except that the loop body is executed at least once.
The syntax of do-while loop statements is as follows:

do {
Statement_1;
Statement_2;
…
Statement_n;

} while (Boolean-expression);

Loop body is executed once first, then the Boolean expression is
checked for additional iterations of the loop body.

52

Loops *

An example involving a do-while loop statement:

main(){
char answer=‘n’;

do {
cout<<“Hello\n”;
cout<<Do you want another greeting?\n”
 <<“Press y for yes, n for no,\n”
 <<“and then press Enter/Return: “;
cin>>answer;

} while (answer ==‘y’ || answer == ‘n’);

cout<<“Goodbye\n”;
}

53

Infinite Loops

Write positive even numbers less than 12:
int x=2;
while (x ! = 12){

cout<<x<<endl;
x=x+2;

}

Write positive odd numbers less than 12:
int x=1;
while (x ! = 12){

cout<<x<<endl;
x=x+2;

}
Which is an infinite loop?
To terminate a program use control-C or Ctrl-C on the
keyboard.

54

for - Statement

In performing numeric calculations, it is common to
do a calculation with the number one, then with the
number two and so forth until some last value is
reached.

For example to add one through ten you want the
computer to perform the following statement ten
times with the value of n equal to 1 the first time and
with n increased by one each subsequent time.

sum=sum + n

55

for – Statement *

The following is one way to accomplish this with a
while statement:

sum=0;
n=1;
while (n<=10){

sum=sum + n;
n++;

}
Although a while-loop is OK here, this kind of
situation is just what the for-loop was designed for.
The following for-loop will neatly accomplish the
same thing:

sum=0;
for (n=1; n <= 10; n++)

sum=sum + n;
56

for – Statement *

An example involving a for-loop:

#include <iostream.h>

main()
{

int sum=0;

for (int n=1; n <= 10; n++){
sum = sum + n;

}

cout<<“The sum of the numbers 1 to 10 is :
“<<sum<<endl;

return 0;
}

initialization repeat the loop
as long as this is true

done after each
loop body iteration

57

break Statement

break-statement can be used to exit a loop.
Sometimes you want to exit a loop before it ends in
the normal way.
For example, the loop might contain a check for
improper input and if some improper input is
encountered then you may want to end the loop. To
input a list of negative numbers and exit the loop if
positive numbers are input:

int count=0, sum=0, number=0;
while (++count <= 10) {

cin>>number; //input number
if (number >= 0)

break; //exit loop
sum = sum + number;

}
 58

continue Statement

We saw on the previous slide how to use the break-
statement to exit from a loop or from a switch-
statement case. There is another control statement
that you can use in your programs: the continue
statement.

The continue statement causes the current iteration
of a loop to stop and the next iteration, if there is
one, to begin. For example consider the following
code fragment:

while (true) {
cin>>letter;
if (letter== ‘ ‘) continue;
…

}
59

Problem Solving

Engineers use their knowledge of science,
mathematics, and appropriate experience to find
suitable solutions to a problem. Engineering is
considered a branch of applied mathematics and
science. Creating an appropriate mathematical model
of a problem allows them to analyze it (sometimes
definitively), and to test potential solutions.

Usually multiple reasonable solutions exist, so
engineers must evaluate the different design choices
on their merits and choose the solution that best
meets their requirements.

60

An Algorithm: Baking a Cake

61

An Algorithm: Baking a Cake *

62

Flowchart
A flowchart is a common type of diagram, that represents an

algorithm or process, showing the steps as boxes of various
kinds, and their order by connecting these with arrows.

Flowcharts are used in analyzing, designing, documenting or
managing a process or program in various fields

63

Flowchart (cont)

64

Flowchart (cont)

65

Flowchart (cont)

Lamp Fixing Flowchart.

66

Flowchart (cont)

Game of Monopoly Flowchart.

67

Pseudocode

This is the pseudocode for a Game of Monopoly,
including one person's move as a procedure:

68

Exercise

1.Find a solution for this equation x^2 + x – 9 = 18.
using pseudocode and flowchart.

2.How can you replace a broken door.
3.Write a pseudocode that illustrate kids going to

the school steps.
4.Draw a flowchart for buying a house.

69

Flowchart Example #1

Draw a flowchart to
find the sum of first
50 natural numbers

70

Flowchart Example #2

Draw a flowchart to find the largest of three
numbers A,B, and C.

71

Flowchart Example #3

Draw a flowchart for
computing factorial N (N!)

72

Arrays

An array is a collection of variables all of the same
data type that are referred to by a common name. A
specific element in an array is accessed by an index.

in C++ the array elements are stored in contiguous
memory locations.
The lowest address refers to the first element and the
highest address refers to the last element.

For example, to store a list of exam marks for students
we can use an array as in:

int mark[5];

This array is of type integer and it can hold 5 variables
of type integer. ‘mark’ is the name of this array.

73

Arrays *

The array declaration (similar to variable declaration)
on the previous slide is like the following declarations:

int mark1, mark2, …, mark5;
You can see that the array notation is clearer and
more elegant. The array

int mark[5];
declares an array of type integer that an store 5
variables all of type integer.

Array elements are numbered from 0. That is, the
index of the first Element in the array is 0 and the
index of the last element is one less than the size of
the array. (in this example, first element has
index 0 and last element has index 4)

74

Arrays *

You can initialize arrays in this way:
int mark[5] = { 87, 67, 90, 89, 100};

The size of this array is 5. The size of the array need
not be declared if it can be inferred from the values in
the initialization:

int mark[] = { 87, 67, 90, 89, 100};
To access array elements we use the array name plus
the index of the required element. For example to
output the second element
of this array:

cout<< mark[1]<<endl;
and the last element:

cout<< mark[4];

75

Arrays *
#include <iostream.h>
main(){

int number[5];

for (int i=0; i<5; i++){
number[i]=i; //initialize the array
cout<<i;

cout<<"\t"<<(number[i] * number[i])<<endl;
}
return 0;

}

76

Arrays *

Array indexed variables are stored in memory in the
same way as ordinary variables are stored. But with
arrays, the locations of the Array indexed variables
are always placed next to one another in the
computer’s memory.
For example consider the following array declaration:

int mark[5];

-3 1 12 -5 0

0 1 2 3 4
Address of 1st element

Mark

77

Arrays *

The most common programming error made when
using arrays is attempting to reference a non-existent
array index. For example consider the following array
declaration:

int mark[5];
For this array, every index must evaluate to one of the
integers between 0 and 4. if you write:

cout<<mark[i]<endl;
Then i must evaluate to one of: 0, 1, 2, 3, 4. if it
evaluates to anything else it is an error. This is an out
of range error.

Be especially careful when using for-loops to
manipulate arrays.

78

Strings
C++ can manipulate text strings in two ways: using cstring values used
in C language and with the new string type that was recently added
to the language. We will cover both methods in these slides.

A cstring variable is exactly the same thing as an array of characters.
For example, the following array of characters is capable of storing
a cstring value with 9 or fewer characters:

char name[10];

This is because a cstring variable is used in a differernt way than
an ordinary array of characters. A cstring variable places the special
symbol ‘\0’ in the array immediately after the last character of the
cstring.

Strings *
For example, consider the following cstring variable:

char name[10] = “MR Nice”;
name[0] name[9]

The character ‘\0’ is used to mark the end of the cstring. Since the
character ‘\0’ always occupies one element of the array, the length
of the longest cstring that the array can hold is one less than the
size of the array.

The character ‘\0’ is called the null character. You can do input and
output with cstring variables as you do with other types of variables.

80

Strings *
You cannot use a cstring variable in an assignment statement using =.
Also, if you use == to test cstrings for equality, you will not get the
result you expect. The reason is that cstrings and cstring variables
are arrays rather than simple variables and values.

So you CANNOT do the following:
char name[10];

name=“Mr Nice”;

This is illegal in the homeland of C++!. You can only do this when you
declare the cstring variable as in:

char name[10]=“Mr Nice”;

Technically, this is an initialization and not an assignment and is legal.

81

Strings *
There are a number of ways to assign a value to a cstring variable.
The easiest way is to use the predefined function strcpy as in:

strcpy(name, “Mr Nice”);
This will assign (assignment) the value “Mr Nice” to character array
name.

Also, you CANNOT use the operator == in an expression to test if two
cstrings are equal. You can use the function strcmp as in:

char name1[]=“Mr A”, name2[]=“Mr B”;

if (strcmp(name1, name2)
cout<<“The two names are NOT the same”<<endl;

else

cout<<“The two names are the same”<<endl;

82

Strings *
Note that the function strcmp works differently than you might
expect. if the function returns a zero it means that the two
cstrings are the same (equal).

The functions strcpy and strcmp are defined in the library file
string.h so you must include this library in your C++ programs to be
able to use the functions.

Another useful function in this library is called strlen which returns
the length of the specified cstring. (‘\0’ is not counted) For example:

int length=0;
char name[]=“Software Engineering”;
length=strlen(name);
cout<<length<<endl; //will output ?

83

Strings Input and Output
As we have already seen, cstring output is easy; we just use the
insertion operator << to do output.

Also you can use the input operator >> to fill a cstring variable, but
there is one thing to be aware of. All spaces are skipped when cstrigs
are read this way. For eg.

char a_cstring[20];
cout<<“Enter some input:\n”;
cin>>a_cstring;
cout<<a_string<<endl;

The output:
Enter some input:
Mr Nice
Mr

84

Strings Input and Output *
So there is a problem with cstring input when input contains spaces
or tabs. The solution to this problem is to use the predefined
function getline which is also defined in the string.h library.

Let’s see an example:

char a_cstring[30];
cout<<“Enter some text:\n”;
cin.getline(a_cstring, 30);
cout<<a_cstring<<endl;

Here, the inputted text or string is copied into the cstring variable
a_cstring. The number 30 specifies the number of characters to
be copied into the variable a_cstring. (we will discuss functions
after finishing this topic)

85

Functions and Procedural Abstraction
A natural way to solve large problems is to break them down into a
series of smaller sub-problems, which can be solved more-or-less
independently and then combined to arrive at a complete solution.

In programming too, you can follow a similar approach and divide large
programs into smaller sub-programs; in C++ sub-programs are called
functions.

Most programs consist of 3 main sections: input, some calculations
and output. We can perform each of these sections separately and
combine the results to produce the final complete program.

In larger programs, it’s almost impossible or very difficult to do
anything without dividing the program using functions. This follows
the old Roman philosophy of divide-and-conquer.

86

Functions *
We have already seen functions such as sqrt(…) to get the square
root of a number. Or the strcpy(s1, s2) which copies one string
to another.

These are pre-defined functions that we can use in our programs.
Somebody else has defined them; we just use them and we even don’t
need to know how the are defined as long as we know how to use
them.

The function sqrt(…) is defined in a file that we can access via the
C++ library ‘math.h’. And the function strcpy(s1, s2) is defined
in a file which we can access via the library ‘string.h’.

You can have user-defined functions too. You can define your own
functions to do specific tasks.

87

Functions *
In the next few slides we will try to write our own functions. At first
we will put these functions in the same file as “main”. Later we will
see how to put them in separate files. Example:
#include <iostream.h>
int area(int length, int width); //function declaration

main()
{

int this_length, this_width, rectangle_area;
cout<<“Enter the length followed by width:”;
cin>>this_length>>this_width;
rectangle_area=area(this_length, this_width); //function call
cout<<“The rectangle area is “<<rectangle_area”<<andl;
return 0;

}
int area(int length, int width) //start of function definition
{

int number;
number= length * width;
return number; //function returning a value

}

88

Functions *
We will now look at this program closely to see how functions work:

The structure of a function is similar to the structure of “main”
with its own list of variable declarations and statements

A function may have a list of zero or more parameters inside its
brackets, each of which has a separate type.

A function must be declared before it can be used or called.
Functions are declared just before the ‘main’ function begins.

Function declarations are a bit like variable declarations; they
specify which type the function will return.

You can define as many functions as you require provided you
declare them first.

89

Functions *
The function ‘area(…,…)’ returns a value of type int. And it takes
two parameters. A parameter is variable; during a function call this
parameter is replaced with a value.

In the this function, we have two parameters, both of type int.
When we call the function area(…,…) we pass two variables,
this-length and this-width, to the function. The function
area(…,…)then does some action on these variables and at the
end, returns some value of type int.

The parameters in the above function are called value parameters.
When the function is called in the main function, it is passed the
current values of the variables this_length and this_width. The
function then stores these values in its own local variables and uses
its own local copies in its subsequent computation.

90

Type Casting
Remember that 9/2 is integer division, and evaluates to 4 , not 4.5.
If you want division to produce an answer of type double, then at
least of the two numbers must be of type double. Ex, 9/2.0 returns
4.5.
We can do this because we had constants and we added a decimal
point and a zero to one or both numbers. BUT if both the operands
in the division are variables, not constants, then we would have a
problem.

In C++ you can tell the computer to convert a value of one type to a
value of another type:

 double(9)/2
produces 4.5 because the type double can also be used as a pre-
defined function. Another ex, double(2) evalutaes to 2.0.
This is called type casting.

91

Local Variables
As we have already seen in some of the functions that we have
defined, you can have variables declared inside those functions.

These variables exist only when you call the function to which they
belong. Variables declared inside functions are called local variables.

The scope of a local variable is the function inside which that variable
is declared. It doesn’t exist outside that function.

If you have a local variable in a function, you can have
another variable with the same name that is declared in the main
function or in another function and these will be different variables.

Remember that main is also a function; but a special one. Every C++
program must have the main function.

92

Global Constants and Variables
In general, constants are declared outside any functions, even outside
the main function. This is good programming as it is usually the case
that more than one function uses the same constant.

Constants are therefore usually declared as a group and just after
any #include directives. Hence the name global constant.

Also, you can declare variables outside any function definitions.
These are called global variables. The scope of global variables is
the entire program, unlike local variables whose scope is limited to
a particular function.

However, there is seldom any need to use global variables. Also,
global variables make a program harder to understand and maintain.
So we will not use global variables unless in exceptional cases.

93

Void Function
The functions that we have seen so far all returned a single value. In
C++ a function must either return a single value or return no values at
all. A function that returns no value is called a void function. Ex.

void myFunction(int num);
{

num++;
cout<<“ one plus your number is “<<num<<endl;

}

As you can see, this function returns no values; it has no return
statements. You call void functions like other C++ statements as in:

main()
{

int x=0;
myFunction(x); //function call
retrun 0;

}

94

Call by Reference Parameters
Will the function in the following program swap values of x1 and x2?
main()
{

int x1=5, x2=10;
swap(x1, x2);
cout<<“now x1 is “<<x1<<“ and x2 is “<<x2<<endl;
return 0;

}
void swap(int num1, int num2)
{

int temp=num1;
num1=num2;
num2=temp;

}

No, it will not. Because here, x1 and x2 have been passed to swap by
value. Copies of x1 and x2 are made and passed to swap and any
changes to their values,inside the function, occur on the copies of
the two variables.

95

Call by Reference Parameters *
The parameters x1 and x2 are call-by-value parameters. The value
of the parameters is passed to the function not the variables
themselves.

To ensure that the actual variables are passed to the function C++
supports call-by-reference parameters. This way, the address or
the actual variables are passed to the function. To correct the swap
function we need to use reference parameters as in:

void swap(int& num1, int& num2) //call-by-reference parameters
{

int temp=num1;
num1=num2;
num2=temp;

}

Notice that you need to append the ampersand sign & to the name.

9696

Sorting Arrays
One of the most common programming tasks is sorting a list of values
from highest to lowest or vice versa or a list of words into
alphabetical order.

There are many sorting algorithms; some are easy to understand but
not so efficient while some are efficient but hard to understand.
One of the easiest sorting algorithms is called selection sort.

The selection sort algorithm works as follows:

for(int index=0; index<ARRAY_SIZE; index++)
Place the indexth smallest element in a[index]

Where a is an array and array-size is the declared size of the array.
algorithms are usually expressed in pseudo-language.

97

Sorting Arrays *
The algorithm iterates through all the elements of the array one by
one and at each iteration it places the smallest number in the array
in the next suitable position.

Now we will implement this algorithm description in C++. We need
functions to do the following:

 +To find the smallest number in the array
 +To swap two values
 +To sort the array

We will now implement each of these functions separately and then
write a main function to test the functions.
(We have already implemented the swap function, see slide 112)

98

Sorting Arrays *
The sort function can be implemented as follows:

void sort(int array[])
{

int index_of_next_smallest = 0;
for(int index=0; index<ARRAY_SIZE-1; index++)
{

index_of_next_smallest=index_of_smallest(array, index);
swap_values(array[index], array[index_of_next_smallest]);

}
}

Notice that the last iteration is redundant (ARRAY_SIZE - 1
iterations)

We call another function to find the index of the next smallest value,
and then call yet another function to swap that value with the value
of the current position in the array.

9999

Sorting Arrays *
Now we will implement the function which will find the index of the
next smallest element of the array:

int index_of_smallest((int array[], int start_index)
{

int min=a[start_index];
int index_of_min=start_index;

for (int index=start_index; index<ARRAY_SIZE; index++)
if (array[index] < min)
{

min=array[index];
index_of_min=index;

}

return index_of_min; //return index of smallest number

}

100

Multidimensional Array
In C++, the elements of an array can be of any type. In particular,
the elements of an array can themselves be arrays. Arrays of arrays
are called multidimensional arrays.

The most common form of a multidimensional array is a two-
dimensional array which is similar to a rectangular structure divided
into rows and columns. This type of two-dimensional array is called a
matrix.

You can have arrays of 3 or more dimensions. They are less common.

Consider the two-dimensional array matrix:
int matrix[2][3]={{2,2,2}, //two rows, three columns

 {2,2,2}};
This is an array (size 2) of two arrays (size 3).

101

Multidimensional Array
We will now look at an example involving two-dimensional arrays; in
this example we will write a function to add to matrixes.

main()
{

int array1[4][2]={ 0,1,
 0,1,
 0,1,
 0,1};

int array2[4][2]={ 1,1,
1,1,

 2,2,
 2,2};

addMatrixes(array1, array2);

return 0;
}

102

Multidimensional Array *
The function takes two two-dimensional arrays as parameters. It
adds the two matrixes and puts the result into the first array. It
then prints the result matrix on the screen.

void addMatrixes(int a[][2], int b[][2])
{

for(int i=0; i<4; i++)
{

for(int j=0; j<2; j++)
a[i][j]=a[i][j]+ b[i][j]; //adding

}
// to display the result on the screen
for(i=0; i<4; i++)
{

for(j=0; j<2; j++)
cout<<array1[i][j]<<" ";

cout<<endl;
}

}

103

Multidimensional Array *
For multi-dimensional array parameters, all the dimension sizes
except the first must be given. This makes sense if you think of
a multi-dimensional array as an array of arrays. In this example we
have an array each element of which is an int array of size 4.
Remember that if you have an array parameter, you do not have to
specify the the array size in the square brackets.

Multi-dimensional arrays are mainly used to perform matrix
operations and numerical analysis calculations. The base type of a
multi-dimensional array can be any type; but for numerical calculations
the type is usually int or double.

In the example on the previous page, we saw how to add two matrixes.
You can also do other matrix operations like matrix multiplication,
matrix transformations using two-dimensional arrays.

104

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104

