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Motivation

 Very large volumes of data being collected
• Driven by growth of web, social media, and more recently internet-of-

things
• Web logs were an early source of data
 Analytics on web logs has great value for advertisements, web site 

structuring, what posts to show to a user, etc

 Big Data:  differentiated from data handled by earlier generation 
databases
• Volume: much larger amounts of data stored
• Velocity: much higher rates of insertions
• Variety: many types of data, beyond relational data
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Querying Big Data

 Transaction processing systems that need very high scalability
• Many applications willing to sacrifice ACID properties and other database 

features, if they can get very high scalability

 Query processing systems that
• Need very high scalability, and 
• need to support non-relation data
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Big Data Storage Systems

 Distributed file systems
 Sharding across multiple databases
 Key-value storage systems
 Parallel and distributed databases
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Distributed File Systems

 A distributed file system stores data across a large collection of 
machines, but provides single file-system view

 Highly scalable distributed file system for large data-intensive 
applications.

• E.g. 10K nodes, 100 million files, 10 PB
 Provides redundant storage of massive amounts of data on cheap and 

unreliable computers
• Files are replicated to handle hardware failure
• Detect failures and recovers from them

 Examples: 

• Google File System (GFS)
• Hadoop File System (HDFS)
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Hadoop File System Architecture

 Single Namespace for entire 
cluster

 Files are broken up into 
blocks
• Typically 64 MB block 

size
• Each block replicated on 

multiple DataNodes
 Client

• Finds location of blocks 
from NameNode

• Accesses data directly 
from DataNode
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Hadoop Distributed File System (HDFS)

 NameNode
• Maps a filename to list of Block IDs
• Maps each Block ID to DataNodes containing a replica of the block

 DataNode : Maps a Block ID to a physical location on disk

 Data Coherency
• Write-once-read-many access model
• Client can only append to existing files

 Distributed file systems good for millions of large files
• but have very high overheads and poor performance with billions 

of smaller tuples
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Sharding

 Sharding: partition data across multiple databases
 Partitioning usually done on some partitioning attributes (also 

known as partitioning keys or shard keys e.g. user ID
• E.g. records with key values from 1 to 100,000 on database 1,

records with key values from 100,001 to 200,000 on database 2, etc.

 Application must track which records are on which database and send 
queries/updates to that database

 Positives: scales well, easy to implement
 Drawbacks:

• Not transparent: application has to deal with routing of queries, queries 
that span multiple databases

• When a database is overloaded, moving part of its load out is not easy
• Chance of failure more with more databases
 need to keep replicas to ensure availability, which is more work for 

application
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Key Value Storage Systems

 Key-value storage systems store large numbers (billions or even 
more) of small (KB-MB) sized records

 Records are partitioned across multiple machines and 
 Queries are routed by the system to appropriate machine
 Records are also replicated across multiple machines, to ensure 

availability even if a machine fails
• Key-value stores ensure that updates are applied to all replicas, to ensure 

that their values are consistent
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Key Value Storage Systems

 Key-value stores may store 
• uninterpreted bytes, with an associated key
 E.g. Amazon S3, Amazon Dynamo

• Wide-table (can have arbitrarily many attribute names) with associated 
key

• Google BigTable, Apache Cassandra, Apache Hbase, Amazon 
DynamoDB

• Allows some operations (e.g. filtering) to execute on storage node
• JSON
 MongoDB, CouchDB (document model)

 Document stores store semi-structured data, typically JSON
 Some key-value stores support multiple versions of data, with 

timestamps/version numbers
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Data Representation

 An example of a JSON object is:
{

"ID": "22222",
"name": {

"firstname: "Albert",
"lastname: "Einstein"

},
"deptname": "Physics",
"children": [

{ "firstname": "Hans", "lastname": "Einstein" },
{ "firstname": "Eduard", "lastname": "Einstein" }

]
}
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Key Value Storage Systems

 Key-value stores support
• put(key, value):  used to store values with an associated key, 
• get(key):  which retrieves the stored value associated with the 

specified key
• delete(key) -- Remove the key and its associated value

 Some systems also support range queries on key values
 Document stores also support queries on non-key attributes

• See book for MongoDB queries

 Key value stores are not full database systems
• Have no/limited support for transactional updates
• Applications must manage query processing on their own

 Not supporting above features makes it easier to build scalable data 
storage systems
• Also called NoSQL systems
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Parallel and Distributed Databases

 Parallel databases run multiple machines  (cluser)
• Developed in 1980s, well before Big Data

 Parallel databases were designed for smaller scale (10s to 100s of 
machines)
• Did not provide easy scalability

 Replication used to ensure data availability despite machine failure
• But typically restart query in event of failure
 Restarts may be frequent at very large scale
 Map-reduce systems (coming up next) can continue query execution, 

working around failures
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Replication and Consistency

 Availability (system can run even if parts have failed) is 
essential for parallel/distributed databases
• Via replication, so even if a node has failed, another copy is 

available
 Consistency is important for replicated data

• All live replicas have same value, and each read sees latest version
• Often implemented using majority protocols
 E.g. have 3 replicas, reads/writes must access 2 replicas

• Details in chapter 23

 Network partitions (network can break into two or more parts, each 
with active systems that can’t talk to other parts)

 In presence of partitions, cannot guarantee both availability and 
consistency
• Brewer’s CAP “Theorem”
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Replication and Consistency

 Very large systems will partition at some point
• Choose one of consistency or availability

 Traditional database choose consistency
 Most Web applications choose availability

• Except for specific parts such as order processing

 More details later, in Chapter 23
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The MapReduce Paradigm

 Platform for reliable, scalable parallel computing
 Abstracts issues of distributed and parallel environment from 

programmer
• Programmer provides core logic (via map() and reduce() functions)
• System takes care of parallelization of computation, coordination, etc

 Paradigm dates back many decades 
• But very large scale implementations running on clusters with 10^3 

to 10^4 machines are more recent
• Google Map Reduce, Hadoop, ..

 Data storage/access typically done using distributed file systems or 
key-value stores
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MapReduce: Word Count Example

 Consider the problem of counting the number of occurrences of each 
word in a large collection of documents

 How would you do it in parallel ? 
 Solution:

• Divide documents among workers
• Each worker parses document to find all words, map function outputs 

(word, count) pairs
• Partition (word, count) pairs across workers based on word
• For each word at a worker, reduce function locally add up counts

 Given input:  “One a penny, two a penny, hot cross buns.”
• Records output by the map() function would be

 (“One”, 1), (“a”, 1), (“penny”, 1),(“two”, 1), (“a”, 1), (“penny”, 1), 
(“hot”, 1), (“cross”, 1), (“buns”, 1).

• Records output by reduce function would be 
 (“One”, 1), (“a”, 2), (“penny”, 2), (“two”, 1), (“hot”, 1), (“cross”, 1), 

(“buns”, 1)
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Pseudo-code of Word Count

map(String record): 
for each word in record 

emit(word, 1); 

// First attribute of emit above is called reduce key
// In effect, group by is performed on reduce key to create a 
// list of values (all 1’s in above code).  This requires shuffle step 
// across machines.
// The reduce function is called on list of values in each group

reduce(String key, List value_list): 
String word = key
int count = 0; 
for each value in value_list: 

count = count + value
Output(word, count);
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MapReduce Programming Model

 Inspired from map and reduce operations commonly used in 
functional programming languages like Lisp.

 Input: a set of key/value pairs
 User supplies two functions:

• map(k,v)  list(k1,v1) 
• reduce(k1, list(v1))  v2

 (k1,v1) is an intermediate key/value pair
 Output is the set of (k1,v2) pairs 
 For our example, assume that system 

• breaks up files into lines, and 
• calls map function with value of each line
 Key is the line number
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MapReduce Example 2: Log Processing

 Given log file in following format:      
...
2013/02/21 10:31:22.00EST /slide-dir/11.ppt
2013/02/21 10:43:12.00EST /slide-dir/12.ppt
2013/02/22 18:26:45.00EST /slide-dir/13.ppt
2013/02/22 20:53:29.00EST /slide-dir/12.ppt
...

 Goal: find how many times each of the  files in the slide-dir directory 
was accessed between 2013/01/01 and 2013/01/31.

 Options:
• Sequential program too slow on massive datasets
• Load into database expensive, direct operation on log files cheaper
• Custom built parallel program for this task possible, but very laborious
• Map-reduce paradigm

http://db-book.com/slide-dir/11.ppt
http://db-book.com/slide-dir/12.ppt
http://db-book.com/slide-dir/13.ppt
http://db-book.com/slide-dir/12.ppt
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MapReduce: File Access Count Example

map(String key, String record) {
String attribute[3];
…. break up record into tokens (based on space character), and store the  

tokens in array attributes
String date = attribute[0];
String time = attribute[1];
String filename = attribute[2];
if (date between 2013/01/01 and 2013/01/31  

and filename starts with "/slide-dir/")
emit(filename, 1).

}
reduce(String key, List recordlist) {

String filename = key;
int count = 0;
For each record in recordlist

count = count + 1.
output(filename, count)

}
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Schematic Flow of Keys and Values

 Flow of keys and values in a map reduce task

mk1 mv1

mk2 mv2

mkn mvn

rk1 rv1

rk7 rv2

rk3 rv3

rk2 rv8

rki rvn

rk1 rv7

rk2 rvi
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rk3 rv3,...      

rk7 rv2,...      

rki ... rvn,...  

map inputs
(key, value)

map outputs reduce inputs
(key, value)
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Parallel Processing of MapReduce Job
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Hadoop MapReduce

 Google pioneered map-reduce implementations that could run on thousands 
of machines (nodes), and transparently handle failures of machines

 Hadoop is a widely used open source implementation of Map Reduce written 
in Java
• Map and reduce functions can be written in several different languages, 

we use Java.
 Input and output to map reduce systems such as Hadoop must be done in 

parallel
• Google used GFS distributed file system
• Hadoop uses Hadoop File System (HDFS), 
• Input files can be in several formats
 Text/CSV
 compressed representation such as Avro, ORC and Parquet

• Hadoop also supports key-value stores such as Hbase, Cassandra, 
MongoDB, etc
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Hadoop

 Types in Hadoop
• Generic Mapper and Reducer interfaces both take four type 

arguments, that specify the types of the
 input key, input value, output key and output value

• Map class in next slide implements the Mapper interface
 Map input key is of type LongWritable, i.e. a long integer
 Map input value which is (all or part of) a document, is of type 

Text.
 Map output key is of type Text, since the key is a word,
 Map output value is of type IntWritable, which is an integer 

value.
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Hadoop Code in Java: Map Function

public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> 
{

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value, Context context)  

throws IOException, InterruptedException
{

String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {

word.set(tokenizer.nextToken());
context.write(word, one);

}
}

}
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Hadoop Code in Java: Reduce Function

public static class Reduce extends Reducer<Text, IntWritable, Text, 
IntWritable> {

public void reduce(Text key, Iterable<IntWritable> values, 
Context context)  throws IOException, InterruptedException

{
int sum = 0;
for (IntWritable val : values) {

sum += val.get();
}
context.write(key, new IntWritable(sum));

}
}
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Hadoop Job Parameters

 The classes that contain the map and reduce functions for the job
• set by methods setMapperClass() and setReducerClass()

 The types of the job’s output key and values
• set by methods setOutputKeyClass() and setOutputValueClass()

 The input format of the job
• set by method job.setInputFormatClass()
 Default input format in Hadoop is the TextInputFormat, 

• map key whose value is a byte offset into the file, and 
• map value is the contents of one line of the file

 The directories where the input files are stored, and where the output files 
must be created
• set by addInputPath() and addOutputPath()

 And many more parameters
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Hadoop Code in Java: Overall Program

public class WordCount {
public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();
Job job = new Job(conf, "wordcount");
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.waitForCompletion(true);

}
}



©Silberschatz, Korth and Sudarshan10.32Database System Concepts - 7th Edition

Map Reduce vs. Databases

 Map Reduce widely used for parallel processing
• Google, Yahoo, and 100’s of other companies
• Example uses: compute PageRank, build keyword indices, do data 

analysis of web click logs, ….
• Allows procedural code in map and reduce functions
• Allows data of any type

 Many real-world uses of MapReduce cannot be expressed in SQL
 But many computations are much easier to express in SQL

• Map Reduce is cumbersome for writing simple queries
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Map Reduce vs.  Databases (Cont.)

 Relational operations (select, project, join, aggregation, etc) can be 
expressed using Map Reduce

 SQL queries can be translated into Map Reduce infrastructure for 
exectuion
• Apache Hive SQL, Apache Pig Latin, Microsoft SCOPE

 Current generation execution engines support not only Map Reduce, 
but also other algebraic operations such as joins, aggregation, etc
natively.
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BEYOND MAPREDUCE: 
ALGEBRAIC OPERATIONS
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Algebraic Operations

 Current generation execution engines 
• natively support algebraic operations such as joins, aggregation, etc

natively.
• Allow users to create their own algebraic operators
• Support trees of algebraic operators that can be executed on multiple 

nodes in parallel

 E.g. Apache Tez, Spark
• Tex provides low level API; Hive on Tez compiles SQL to Tez
• Spark provides more user-friendly API



©Silberschatz, Korth and Sudarshan10.36Database System Concepts - 7th Edition

Algebraic Operations in Spark

 Resilient Distributed Dataset (RDD) abstraction
• Collection of records that can be stored across multiple machines

 RDDs can be created by applying algebraic operations on other 
RDDs

 RDDs can be lazily computed when needed
 Spark programs can be written in Java/Scala/R

• Our examples are in Java

 Spark makes use of Java 8 Lambda expressions; the code
s - > Arrays.asList(s.split(" ")).iterator() 

defines unnamed function that takes argument s and executes the 
expression Arrays.asList(s.split(" ")).iterator()  on the argument

 Lambda functions are particularly convenient as arguments to map, 
reduce and other functions 
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Word Count in Spark
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Algebraic Operations in Spark

 Algebraic operations in Spark are typically executed in parallel on 
multiple machines
• With data partitioned across the machines

 Algebraic operations are executed lazily, not immediately
• Our preceding program creates an operator tree
• Tree is executed only on specific functions such as saveAsTextFile() or 

collect()
• Query optimization can be performed on tree before it is executed
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Spark DataFrames and DataSet

 RDDs in Spark can be typed in programs, but not dynamically
 The DataSet type allows types to be specified dynamically
 Row is a row type, with attribute names 

• In code below, attribute names/types of instructor and department 
are inferred from files read 

 Operations filter, join, groupBy, agg, etc defined on DataSet, and can 
execute in parallel

 Dataset<Row> instructor = spark.read().parquet("...");
Dataset<Row> department = spark.read().parquet("...");
instructor.filter(instructor.col("salary").gt(100000))
.join(department, instructor.col("dept name")
.equalTo(department.col("dept name")))
.groupBy(department.col("building"))
.agg(count(instructor.col("ID"))); 
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STREAMING DATA
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Streaming Data and Applications

 Streaming data refers to data that arrives in a continuous fashion
• Contrast to data-at-rest

 Applications include:
• Stock market: stream of trades
• e-commerce site: purchases, searches
• Sensors: sensor readings
 Internet of things

• Network monitoring data
• Social media: tweets and posts can be viewed as a stream

 Queries on streams can be very useful
• Monitoring, alerts, automated triggering of actions
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Querying Streaming Data

Approaches to querying streams:
 Windowing: Break up stream into windows, and queries are run on 

windows
• Stream query languages support window operations
• Windows may be based on time or tuples
• Must figure out when all tuples in a window have been seen
 Easy if stream totally ordered by timestamp
 Punctuations specify that all future tuples have timestamp greater 

that some value

 Continuous Queries: Queries written e.g. in SQL, output partial 
results based on stream seen so far;  query results updated 
continuously
• Have some applications, but can lead to flood of updates
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Querying Streaming Data (Cont.)

Approaches to querying streams (cont.):
 Algebraic operators on streams:

• Each operator consumes tuples from a stream and outputs tuples
• Operators can be written e.g. in an imperative language
• Operator may maintain state

 Pattern matching: 
• Queries specify patterns, system detects occurrences of patterns and 

triggers actions
• Complex Event Processing (CEP) systems
• E.g. Microsoft StreamInsight, Flink CEP, Oracle Event Processing
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Stream Processing Architectures

 Many stream processing systems are purely in-memory, and do not 
persist data

 Lambda architecture: split stream into two, one output goes to 
stream processing system and the other to a database for storage
• Easy to implement and widely used
• But often leads to duplication of querying effort, once on streaming 

system and once in database
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Stream Extensions to SQL

 SQL Window functions described in Section 5.5.2
 Streaming systems often support more window types

• Tumbling window
 E.g. hourly windows, windows don’t overlab

• Hopping window
 E.g. hourly window computed every 20 minutes

• Sliding window
 Window of specified size (based on timestamp interval or number of 

tuples) around each incoming tuple
• Session window
 Groups tuples based on user sessions 



©Silberschatz, Korth and Sudarshan10.46Database System Concepts - 7th Edition

Window Syntax in SQL

 Windowing syntax varies widely by system
 E.g. in Azure Stream Analytics SQL:

select item, System.Timestamp as window end, sum(amount)
from order timestamp by datetime
group by itemid, tumblingwindow(hour, 1) 

 Aggregates are applied on windows
 Result of windowing operation on a stream is a relation
 Many systems support stream-relation joins
 Stream-stream joins often require join conditions to specify bound on 

timestamp gap between matching tuples
• E.g. tuples must be at most 30 minutes apart in timestamp
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Algebraic Operations on Streams

 Tuples in streams need to be routed to operators
 Routing of streams using DAG and publish-subscribe representations

• Used e.g. in Apache Storm and Apache Kafka respective
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Publish Subscribe Systems

 Publish-subscribe (pub-sub) systems provide convenient 
abstraction for processing streams
• Tuples in a stream are published to a topic
• Consumers subscribe to topic

 Parallel pub-sub systems allow tuples in a topic to be partitioned 
across multiple machines

 Apache Kafka is a popular parallel pub-sub system widely used to 
manage streaming data

 More details in book



©Silberschatz, Korth and Sudarshan10.49Database System Concepts - 7th Edition

GRAPH DATABASES
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Graph Data Model

 Graphs are a very general data model
 ER model of an enterprise can be viewed as a graph

• Every entity is a node
• Every binary relationship is an edge
• Ternary and higher degree relationships can be modelled as binary 

relationships
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Graph Data Model (Cont.)

 Graphs can be modelled as relations
• node(ID, label, node_data)
• edge(fromID, toID, label, edge_data)

 Above representation too simplistic
 Graph databases like Neo4J can provide a graph view of relational 

schema
• Relations can be identified as representing either nodes or edges

 Query languages for graph databases make it 
• easy to express queries requiring edge traversal
• allow efficient algorithms to be used for evaluation
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Graph Data Model (Cont.)

 Suppose
• relations instructor and student are nodes, and 
• relation advisor represents edges between instructors and student

 Query in Neo4J:
match (i:instructor)<-[:advisor]-(s:student)
where i.dept name= 'Comp. Sci.’
return i.ID as ID, i.name as name, collect(s.name) as advisees

 match clause matches nodes and edges in graphs
 Recursive traversal of edges is also possible

• Suppose prereq(course_id, prereq_id) is modeled as an edge
• Transitive closure can be done as follows:

match (c1:course)-[:prereq *1..]->(c2:course)
return c1.course id, c2.course id
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Parallel Graph Processing

 Very large graphs (billions of nodes, trillions of edges)
• Web graph:  web pages are nodes, hyper links are edges
• Social network graph: people are nodes, friend/follow links are edges

 Two popular approaches for parallel processing on such graphs
• Map-reduce and algebraic frameworks
• Bulk synchronous processing (BSP) framework

 Multiple iterations are required for any computations on graphs
• Map-reduce/algebraic frameworks often have high overheads per iteration
• BSP frameworks have much lower per-iteration overheads

 Google’s Pregel system popularized the BSP framework
 Apache Giraph is an open-source version of Pregel
 Apache Spark’s GraphX component provides a Pregel-like API 
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Bulk Synchronous Processing

Bulk synchronous processing framework
 Each vertex (node) of a graph has data (state) associated with it

• Vertices are partitioned across multiple machines, and state of node kept 
in-memory

 Analogous to map() and reduce() functions, programmers provide 
methods to be executed for each node
• Node method can send messages to or receive messages from 

neighboring nodes

 Computation consists of multiple iterations, or supersteps
 In each superstep

• nodes process received messages
• update their state, and 
• send further messages or vote to halt
• Computation ends when all nodes vote to halt, and there are no pending 

messages;
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END OF CHAPTER
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