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Chapter 21:  Database System Architectures

▪ Centralized Database Systems

▪ Server System Architectures

▪ Parallel Systems

▪ Distributed Systems

▪ Network Types
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Centralized Database Systems

▪ Run on a single computer system

▪ Single-user system

• Embedded databases

▪ Multi-user systems also known as server systems.

• Service requests received from client systems

• Multi-core systems with coarse-grained parallelism

▪ Typically a few to tens of processor cores

▪ In contrast, fine-grained parallelism uses very large number of 

computers
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Server System Architecture

▪ Server systems can be broadly categorized into two kinds:

• transaction servers

▪ Widely used in relational database systems, and

• data servers

▪ Parallel data servers used to implement high-performance 

transaction processing systems
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Transaction Servers

▪ Also called query server systems or SQL server systems

• Clients send requests to the server

• Transactions are executed at the server

• Results are shipped back to the client.

▪ Requests are specified in SQL, and communicated to the 

server through a remote procedure call (RPC) mechanism.

▪ Transactional RPC allows many RPC calls to form a 

transaction.

▪ Applications typically use ODBC/JDBC APIs to communicate 

with transaction servers
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Transaction System Processes (Cont.)
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Transaction Server Process Structure

▪ A typical transaction server consists of multiple processes accessing 

data in shared memory

▪ Shared memory contains shared data 

• Buffer pool

• Lock table

• Log buffer

• Cached query plans (reused if same query submitted again)

▪ All database processes can access shared memory

▪ Server processes

• These receive user queries (transactions), execute them and send 

results back

• Processes may be multithreaded, allowing a single process to 

execute several user queries concurrently

• Typically multiple multithreaded server processes
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Transaction Server Processes (Cont.)

▪ Database writer process

• Output modified buffer blocks to disks continually

▪ Log writer process

• Server processes simply add log records to log record 

buffer

• Log writer process outputs log records to stable storage. 

▪ Checkpoint process

• Performs periodic checkpoints

▪ Process monitor process

• Monitors other processes, and takes recovery actions if any 

of the other processes fail

▪ E.g. aborting any transactions being executed by a 

server process and restarting it
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Transaction System Processes (Cont.)

▪ Lock manager process

• To avoid overhead of interprocess communication for lock request/grant, 
each database process operates directly on the lock table 

▪ instead of sending requests to lock manager process

• Lock manager process still used for deadlock detection

▪ To ensure that no two processes are accessing the same data 
structure at the same time, databases systems implement mutual 
exclusion using either

• Atomic instructions

▪ Test-And-Set

▪ Compare-And-Swap (CAS)

• Operating system semaphores

▪ Higher overhead than atomic instructions
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Atomic Instructions

▪ Test-And-Set(M)

• Memory location M, initially 0

• Test-and-set(M) sets M to 1, and returns old value of M

▪ Return value 0 indicates process has acquired the mutex

▪ Return value 1 indicates someone is already holding the mutex

• Must try again later

▪ Release of mutex done by setting M = 0

▪ Compare-and-swap(M, V1, V2)

• Atomically do following

▪ If M = V1, set M = V2 and return success

▪ Else return failure

• With M = 0 initially, CAS(M, 0, 1) equivalent to test-and-set(M)

• Can use CAS(M, 0, id) where id = thread-id or process-id to record who 

has the mutex
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Data Servers/Data Storage Systems

▪ Data items are shipped to clients where processing is performed

▪ Updated data items written back to server

▪ Earlier generation of data servers would operated in units of data 

items, or pages containing multiple data items

▪ Current generation data servers (also called data storage systems) 

only work in units of data items

• Commonly used data item formats include JSON, XML, or just 

uninterpreted binary strings
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Data Servers/Storage Systems (Cont.)

▪ Prefetching

• Prefetch items that may be used soon

▪ Data caching

• Cache coherence

▪ Lock caching

• Locks can be cached by client across transactions

• Locks can be called back by the server

▪ Adaptive lock granularity

• Lock granularity escalation

▪ switch from finer granularity (e.g. tuple) lock to coarser

• Lock granularity de-escalation

▪ Start with coarse granularity to reduve overheads, switch to 
finer granularity in case of more concurrency conflict at server

▪ Details in book
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Data Servers (Cont.)

▪ Data Caching

• Data can be cached at client even in between transactions

• But check that data is up-to-date before it is used (cache 

coherency)

• Check can be done when requesting lock on data item

▪ Lock Caching

• Locks can be retained by client system even in between 

transactions

• Transactions can acquire cached locks locally, without contacting 

server

• Server calls back locks from clients when it receives conflicting 

lock request.  Client returns lock once no local transaction is using 

it.

▪ Similar to lock callback on prefetch, but across transactions.
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Parallel Systems

▪ Parallel database systems consist of multiple processors and multiple 

disks connected by a fast interconnection network.

▪ Motivation: handle workloads beyond what a single computer system 

can handle

▪ High performance transaction processing

• E.g. handling user requests at web-scale

▪ Decision support on very large amounts of data

• E.g. data gathered by large web sites/apps
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Parallel Systems (Cont.)

▪ A coarse-grain parallel machine consists of a small number of 

powerful processors

▪ A massively parallel or fine grain parallel machine utilizes 

thousands of smaller processors.

• Typically hosted in a data center

▪ Two main performance measures:

• throughput --- the number of tasks that can be completed in a 

given time interval

• response time --- the amount of time it takes to complete a single 

task from the time it is submitted
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Speed-Up and Scale-Up

▪ Speedup: a fixed-sized problem executing on a small system is given 

to a system which is N-times larger.

• Measured by:

• speedup = small system elapsed time

• large system elapsed time

• Speedup is linear if equation equals N.

▪ Scaleup: increase the size of both the problem and the system

• N-times larger system used to perform N-times larger job

• Measured by:

• scaleup = small system small problem elapsed time

• big system big problem elapsed time 

• Scale up is linear if equation equals 1.
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Speedup



©Silberschatz, Korth and Sudarshan20.18Database System Concepts - 7th Edition

Scaleup
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Batch and Transaction Scaleup

▪ Batch scaleup:

• A single large job; typical of most decision support queries and 

scientific simulation.

• Use an N-times larger computer on N-times larger problem.

▪ Transaction scaleup:

• Numerous small queries submitted by independent users to a 

shared database; typical transaction processing and timesharing 

systems.

• N-times as many users submitting requests (hence, N-times as 

many requests) to an N-times larger database, on an N-times 

larger computer.

• Well-suited to parallel execution.
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Factors Limiting Speedup and Scaleup

Speedup and scaleup are often sublinear due to:

▪ Startup/sequential costs: Cost of starting up multiple processes, and 

sequential computation before/after parallel computation

• May dominate computation time, if the degree of parallelism is high

• Suppose p fraction of computation is sequential

• Amdahl’s law:    speedup limited to:  1 / [(1-p)+(p/n)] 

• Gustafson’s law: scaleup limited to: 1 / [n(1-p)+p] 

▪ Interference:  Processes accessing shared resources (e.g.,system

bus, disks, or locks) compete with each other, thus spending time 

waiting on other processes, rather than performing useful work.

▪ Skew: Increasing the degree of parallelism increases the variance in 

service times of parallely executing tasks.  Overall execution time 

determined by slowest of parallely executing tasks.
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Interconnection Network Architectures

▪ Bus. System components send data on and receive data from a 
single communication bus;

• Does not scale well with increasing parallelism.

▪ Mesh. Components are arranged as nodes in a grid, and each 
component is connected to all adjacent components

• Communication links grow with growing number of components, and so 
scales better.  

• But may require 2n hops to send message to a node (or n with 
wraparound connections at edge of grid).

▪ Hypercube.  Components are numbered in binary;  components are 
connected to one another if their binary representations differ in 
exactly one bit.

• n components are connected to log(n) other components and can reach 
each other via at most log(n) links; reduces communication delays.

▪ Tree-like Topology. Widely used in data centers today
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Interconnection Architectures
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Interconnection Network Architectures

▪ Tree-like or Fat-Tree Topology: widely used in data centers today

• Top of rack switch for approx 40 machines in rack

• Each top of rack switch connected to multiple aggregation 
switches.

• Aggregation switches connect to multiple core switches.  

▪ Data center fabric
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Network Technologies 

▪ Ethernet

• 1 Gbps and 10 Gbps common, 40 Gbps and 100 Gbps are available at 

higher cost 

▪ Fiber Channel

• 32-138 Gbps available

▪ Infiniband

• a very-low-latency networking technology 

▪ 0.5 to 0.7 microseconds, compared to a few microseconds for 

optimized ethernet
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Parallel Database Architectures
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Shared Memory

▪ Processors (or processor cores) and 

disks have access to a common 

memory

• Via a bus in earlier days, through an 

interconnection network today

▪ Extremely efficient communication 

between processors 

▪ Downside: shared-memory architecture 

is not scalable beyond 64 to 128 

processor cores

• Memory interconnection network 

becomes a bottleneck



©Silberschatz, Korth and Sudarshan20.27Database System Concepts - 7th Edition

Modern Shared Memory Architecture
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Cache Levels

▪ Cache line: typically 64 bytes in today’s processors

▪ Cache levels within a single multi-core processor 

▪ Shared memory system can have multiple processors, each with its 

own cache levels
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Cache Coherency

▪ Cache coherency:

• Local cache may have out of date value

• Strong vs weak consistency models

• With weak consistency, need special instructions to ensure cache is up to 

date

▪ Memory barrier instructions

• Store barrier (sfence)

▪ Instruction returns after forcing cached data to be written to memory 

and invalidations sent to all caches

• Load barrier (lfence)

▪ Returns after ensuring all pending cache invalidations are processed

• mfence instruction does both of above

▪ Locking code usually takes care of barrier instructions

• Lfence done after lock acquisition and sfence done before lock release
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Shared Disk

▪ All processors can directly access 

all disks via an interconnection 

network, but the processors have 

private memories.

• Architecture provides a degree 

of fault-tolerance — if a 

processor fails, the other 

processors can take over its 

tasks

▪ the data of the failed 

processor is resident on 

disks that are accessible 

from all processors.

▪ Downside: bottleneck now occurs 

at interconnection to the disk 

subsystem.
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Modern Shared Disk Architectures: 

via Storage Area Network (SAN)
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Shared Nothing

▪ Node consists of a processor, 

memory, and one or more disks

▪ All communication via 

interconnection network

▪ Can be scaled up to thousands of 

processors without interference.

▪ Main drawback: cost of 

communication and non-local disk 

access; sending data involves 

software interaction at both ends.
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Hierarchical

▪ Combines characteristics of shared-memory, shared-disk, and 

shared-nothing architectures.

• Top level is a shared-nothing architecture

▪ With each node of the system being a shared-memory system

• Alternatively, top level could be a shared-disk system

▪ With each node of the system being a shared-memory system
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Shared-Memory Vs Shared-Nothing

▪ Shared-memory internally looks like shared-nothing!

• Each processor has direct access to its own memory, and indirect 

(hardware level) access to rest of memory

• Also called non-uniform memory architecture (NUMA)

▪ Shared-nothing can be made to look like shared memory

• Reduce the complexity of programming such systems by distributed 

virtual-memory abstraction

• Remote Direct Memory Access (RDMA) provides very low-latency 

shared memory abstraction on shared-nothing systems

▪ Often implemented on top of infiniband due it its very-low-latency

• But careless programming can lead to performance issues
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Distributed Systems

▪ Data spread over multiple machines (also referred to as sites or 

nodes).

▪ Local-area networks (LANs)

▪ Wide-area networks (WANs)

• Higher latency
site A site C

site B

communication
via network

network
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Distributed Databases

▪ Homogeneous distributed databases

• Same software/schema on all sites, data may be partitioned 
among sites

• Goal: provide a view of a single database, hiding details of 
distribution

▪ Heterogeneous distributed databases

• Different software/schema on different sites

• Goal: integrate existing databases to provide useful functionality

▪ Differentiate between local transactions and global transactions

• A local transaction accesses data in the single site at which the 
transaction was initiated.

• A global transaction either accesses data in a site different from 
the one at which the transaction was initiated or accesses data in 
several different sites.
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Data Integration and Distributed 

Databases

▪ Data integration between multiple distributed databases

▪ Benefits:

• Sharing data – users at one site able to access the data residing 

at some other sites.

• Autonomy – each site is able to retain a degree of control over 

data stored locally.
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Availability

▪ Network partitioning

▪ Availability of system

• If all nodes are required for system to function, failure of even one node 

stops system functioning.

• Higher system availability through redundancy

▪ data can be replicated at remote sites, and system can function 

even if a site fails.
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Implementation Issues for Distributed 

Databases 

▪ Atomicity needed even for transactions that update data at multiple 

sites

▪ The two-phase commit protocol (2PC) is used to ensure atomicity

• Basic idea:  each site executes transaction until just before 

commit, and the leaves final decision to a coordinator

• Each site must follow decision of coordinator, even if there is a 

failure while waiting for coordinators decision

▪ 2PC is not always appropriate:  other transaction models based on 

persistent messaging, and workflows, are also used 

▪ Distributed concurrency control (and deadlock detection) required

▪ Data items may be replicated to improve data availability

▪ Details of all above in Chapter 24
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Cloud Based Services

▪ Cloud computing widely adopted today

• On-demand provisioning and elasticity

▪ ability to scale up at short notice and to release of unused 

resources for use by others

▪ Infrastructure as a service

• Virtual machines/real machines

▪ Platform as a service

• Storage, databases, application server

▪ Software as a service 

• Enterprise applications, emails, shared documents, etc,

▪ Potential drawbacks

• Security

• Network bandwidth
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Cloud Service Models
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Application Deployment Alternatives

Individual Machines                       Virtual Machines                         Containers

(e.g. VMWare, KVM, ..)                (e.g. Docker) 
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Application Deployment Architectures

▪ Services

▪ Microservice Architecture

• Application uses a variety of services

• Service can add or remove instances as required 

▪ Kubernetes supports containers, and microservices
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Figure 17.11


