
Database System Concepts, 7th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 20: Database System Architectures

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan20.2Database System Concepts - 7th Edition

Chapter 21: Database System Architectures

▪ Centralized Database Systems

▪ Server System Architectures

▪ Parallel Systems

▪ Distributed Systems

▪ Network Types

©Silberschatz, Korth and Sudarshan20.3Database System Concepts - 7th Edition

Centralized Database Systems

▪ Run on a single computer system

▪ Single-user system

• Embedded databases

▪ Multi-user systems also known as server systems.

• Service requests received from client systems

• Multi-core systems with coarse-grained parallelism

▪ Typically a few to tens of processor cores

▪ In contrast, fine-grained parallelism uses very large number of

computers

©Silberschatz, Korth and Sudarshan20.4Database System Concepts - 7th Edition

Server System Architecture

▪ Server systems can be broadly categorized into two kinds:

• transaction servers

▪ Widely used in relational database systems, and

• data servers

▪ Parallel data servers used to implement high-performance

transaction processing systems

©Silberschatz, Korth and Sudarshan20.5Database System Concepts - 7th Edition

Transaction Servers

▪ Also called query server systems or SQL server systems

• Clients send requests to the server

• Transactions are executed at the server

• Results are shipped back to the client.

▪ Requests are specified in SQL, and communicated to the

server through a remote procedure call (RPC) mechanism.

▪ Transactional RPC allows many RPC calls to form a

transaction.

▪ Applications typically use ODBC/JDBC APIs to communicate

with transaction servers

©Silberschatz, Korth and Sudarshan20.6Database System Concepts - 7th Edition

Transaction System Processes (Cont.)

©Silberschatz, Korth and Sudarshan20.7Database System Concepts - 7th Edition

Transaction Server Process Structure

▪ A typical transaction server consists of multiple processes accessing

data in shared memory

▪ Shared memory contains shared data

• Buffer pool

• Lock table

• Log buffer

• Cached query plans (reused if same query submitted again)

▪ All database processes can access shared memory

▪ Server processes

• These receive user queries (transactions), execute them and send

results back

• Processes may be multithreaded, allowing a single process to

execute several user queries concurrently

• Typically multiple multithreaded server processes

©Silberschatz, Korth and Sudarshan20.8Database System Concepts - 7th Edition

Transaction Server Processes (Cont.)

▪ Database writer process

• Output modified buffer blocks to disks continually

▪ Log writer process

• Server processes simply add log records to log record

buffer

• Log writer process outputs log records to stable storage.

▪ Checkpoint process

• Performs periodic checkpoints

▪ Process monitor process

• Monitors other processes, and takes recovery actions if any

of the other processes fail

▪ E.g. aborting any transactions being executed by a

server process and restarting it

©Silberschatz, Korth and Sudarshan20.9Database System Concepts - 7th Edition

Transaction System Processes (Cont.)

▪ Lock manager process

• To avoid overhead of interprocess communication for lock request/grant,
each database process operates directly on the lock table

▪ instead of sending requests to lock manager process

• Lock manager process still used for deadlock detection

▪ To ensure that no two processes are accessing the same data
structure at the same time, databases systems implement mutual
exclusion using either

• Atomic instructions

▪ Test-And-Set

▪ Compare-And-Swap (CAS)

• Operating system semaphores

▪ Higher overhead than atomic instructions

©Silberschatz, Korth and Sudarshan20.10Database System Concepts - 7th Edition

Atomic Instructions

▪ Test-And-Set(M)

• Memory location M, initially 0

• Test-and-set(M) sets M to 1, and returns old value of M

▪ Return value 0 indicates process has acquired the mutex

▪ Return value 1 indicates someone is already holding the mutex

• Must try again later

▪ Release of mutex done by setting M = 0

▪ Compare-and-swap(M, V1, V2)

• Atomically do following

▪ If M = V1, set M = V2 and return success

▪ Else return failure

• With M = 0 initially, CAS(M, 0, 1) equivalent to test-and-set(M)

• Can use CAS(M, 0, id) where id = thread-id or process-id to record who

has the mutex

©Silberschatz, Korth and Sudarshan20.11Database System Concepts - 7th Edition

Data Servers/Data Storage Systems

▪ Data items are shipped to clients where processing is performed

▪ Updated data items written back to server

▪ Earlier generation of data servers would operated in units of data

items, or pages containing multiple data items

▪ Current generation data servers (also called data storage systems)

only work in units of data items

• Commonly used data item formats include JSON, XML, or just

uninterpreted binary strings

©Silberschatz, Korth and Sudarshan20.12Database System Concepts - 7th Edition

Data Servers/Storage Systems (Cont.)

▪ Prefetching

• Prefetch items that may be used soon

▪ Data caching

• Cache coherence

▪ Lock caching

• Locks can be cached by client across transactions

• Locks can be called back by the server

▪ Adaptive lock granularity

• Lock granularity escalation

▪ switch from finer granularity (e.g. tuple) lock to coarser

• Lock granularity de-escalation

▪ Start with coarse granularity to reduve overheads, switch to
finer granularity in case of more concurrency conflict at server

▪ Details in book

©Silberschatz, Korth and Sudarshan20.13Database System Concepts - 7th Edition

Data Servers (Cont.)

▪ Data Caching

• Data can be cached at client even in between transactions

• But check that data is up-to-date before it is used (cache

coherency)

• Check can be done when requesting lock on data item

▪ Lock Caching

• Locks can be retained by client system even in between

transactions

• Transactions can acquire cached locks locally, without contacting

server

• Server calls back locks from clients when it receives conflicting

lock request. Client returns lock once no local transaction is using

it.

▪ Similar to lock callback on prefetch, but across transactions.

©Silberschatz, Korth and Sudarshan20.14Database System Concepts - 7th Edition

Parallel Systems

▪ Parallel database systems consist of multiple processors and multiple

disks connected by a fast interconnection network.

▪ Motivation: handle workloads beyond what a single computer system

can handle

▪ High performance transaction processing

• E.g. handling user requests at web-scale

▪ Decision support on very large amounts of data

• E.g. data gathered by large web sites/apps

©Silberschatz, Korth and Sudarshan20.15Database System Concepts - 7th Edition

Parallel Systems (Cont.)

▪ A coarse-grain parallel machine consists of a small number of

powerful processors

▪ A massively parallel or fine grain parallel machine utilizes

thousands of smaller processors.

• Typically hosted in a data center

▪ Two main performance measures:

• throughput --- the number of tasks that can be completed in a

given time interval

• response time --- the amount of time it takes to complete a single

task from the time it is submitted

©Silberschatz, Korth and Sudarshan20.16Database System Concepts - 7th Edition

Speed-Up and Scale-Up

▪ Speedup: a fixed-sized problem executing on a small system is given

to a system which is N-times larger.

• Measured by:

• speedup = small system elapsed time

• large system elapsed time

• Speedup is linear if equation equals N.

▪ Scaleup: increase the size of both the problem and the system

• N-times larger system used to perform N-times larger job

• Measured by:

• scaleup = small system small problem elapsed time

• big system big problem elapsed time

• Scale up is linear if equation equals 1.

©Silberschatz, Korth and Sudarshan20.17Database System Concepts - 7th Edition

Speedup

©Silberschatz, Korth and Sudarshan20.18Database System Concepts - 7th Edition

Scaleup

©Silberschatz, Korth and Sudarshan20.19Database System Concepts - 7th Edition

Batch and Transaction Scaleup

▪ Batch scaleup:

• A single large job; typical of most decision support queries and

scientific simulation.

• Use an N-times larger computer on N-times larger problem.

▪ Transaction scaleup:

• Numerous small queries submitted by independent users to a

shared database; typical transaction processing and timesharing

systems.

• N-times as many users submitting requests (hence, N-times as

many requests) to an N-times larger database, on an N-times

larger computer.

• Well-suited to parallel execution.

©Silberschatz, Korth and Sudarshan20.20Database System Concepts - 7th Edition

Factors Limiting Speedup and Scaleup

Speedup and scaleup are often sublinear due to:

▪ Startup/sequential costs: Cost of starting up multiple processes, and

sequential computation before/after parallel computation

• May dominate computation time, if the degree of parallelism is high

• Suppose p fraction of computation is sequential

• Amdahl’s law: speedup limited to: 1 / [(1-p)+(p/n)]

• Gustafson’s law: scaleup limited to: 1 / [n(1-p)+p]

▪ Interference: Processes accessing shared resources (e.g.,system

bus, disks, or locks) compete with each other, thus spending time

waiting on other processes, rather than performing useful work.

▪ Skew: Increasing the degree of parallelism increases the variance in

service times of parallely executing tasks. Overall execution time

determined by slowest of parallely executing tasks.

©Silberschatz, Korth and Sudarshan20.21Database System Concepts - 7th Edition

Interconnection Network Architectures

▪ Bus. System components send data on and receive data from a
single communication bus;

• Does not scale well with increasing parallelism.

▪ Mesh. Components are arranged as nodes in a grid, and each
component is connected to all adjacent components

• Communication links grow with growing number of components, and so
scales better.

• But may require 2n hops to send message to a node (or n with
wraparound connections at edge of grid).

▪ Hypercube. Components are numbered in binary; components are
connected to one another if their binary representations differ in
exactly one bit.

• n components are connected to log(n) other components and can reach
each other via at most log(n) links; reduces communication delays.

▪ Tree-like Topology. Widely used in data centers today

©Silberschatz, Korth and Sudarshan20.22Database System Concepts - 7th Edition

Interconnection Architectures

©Silberschatz, Korth and Sudarshan20.23Database System Concepts - 7th Edition

Interconnection Network Architectures

▪ Tree-like or Fat-Tree Topology: widely used in data centers today

• Top of rack switch for approx 40 machines in rack

• Each top of rack switch connected to multiple aggregation
switches.

• Aggregation switches connect to multiple core switches.

▪ Data center fabric

©Silberschatz, Korth and Sudarshan20.24Database System Concepts - 7th Edition

Network Technologies

▪ Ethernet

• 1 Gbps and 10 Gbps common, 40 Gbps and 100 Gbps are available at

higher cost

▪ Fiber Channel

• 32-138 Gbps available

▪ Infiniband

• a very-low-latency networking technology

▪ 0.5 to 0.7 microseconds, compared to a few microseconds for

optimized ethernet

©Silberschatz, Korth and Sudarshan20.25Database System Concepts - 7th Edition

Parallel Database Architectures

©Silberschatz, Korth and Sudarshan20.26Database System Concepts - 7th Edition

Shared Memory

▪ Processors (or processor cores) and

disks have access to a common

memory

• Via a bus in earlier days, through an

interconnection network today

▪ Extremely efficient communication

between processors

▪ Downside: shared-memory architecture

is not scalable beyond 64 to 128

processor cores

• Memory interconnection network

becomes a bottleneck

©Silberschatz, Korth and Sudarshan20.27Database System Concepts - 7th Edition

Modern Shared Memory Architecture

©Silberschatz, Korth and Sudarshan20.28Database System Concepts - 7th Edition

Cache Levels

▪ Cache line: typically 64 bytes in today’s processors

▪ Cache levels within a single multi-core processor

▪ Shared memory system can have multiple processors, each with its

own cache levels

©Silberschatz, Korth and Sudarshan20.29Database System Concepts - 7th Edition

Cache Coherency

▪ Cache coherency:

• Local cache may have out of date value

• Strong vs weak consistency models

• With weak consistency, need special instructions to ensure cache is up to

date

▪ Memory barrier instructions

• Store barrier (sfence)

▪ Instruction returns after forcing cached data to be written to memory

and invalidations sent to all caches

• Load barrier (lfence)

▪ Returns after ensuring all pending cache invalidations are processed

• mfence instruction does both of above

▪ Locking code usually takes care of barrier instructions

• Lfence done after lock acquisition and sfence done before lock release

©Silberschatz, Korth and Sudarshan20.30Database System Concepts - 7th Edition

Shared Disk

▪ All processors can directly access

all disks via an interconnection

network, but the processors have

private memories.

• Architecture provides a degree

of fault-tolerance — if a

processor fails, the other

processors can take over its

tasks

▪ the data of the failed

processor is resident on

disks that are accessible

from all processors.

▪ Downside: bottleneck now occurs

at interconnection to the disk

subsystem.

©Silberschatz, Korth and Sudarshan20.31Database System Concepts - 7th Edition

Modern Shared Disk Architectures:

via Storage Area Network (SAN)

©Silberschatz, Korth and Sudarshan20.32Database System Concepts - 7th Edition

Shared Nothing

▪ Node consists of a processor,

memory, and one or more disks

▪ All communication via

interconnection network

▪ Can be scaled up to thousands of

processors without interference.

▪ Main drawback: cost of

communication and non-local disk

access; sending data involves

software interaction at both ends.

©Silberschatz, Korth and Sudarshan20.33Database System Concepts - 7th Edition

Hierarchical

▪ Combines characteristics of shared-memory, shared-disk, and

shared-nothing architectures.

• Top level is a shared-nothing architecture

▪ With each node of the system being a shared-memory system

• Alternatively, top level could be a shared-disk system

▪ With each node of the system being a shared-memory system

©Silberschatz, Korth and Sudarshan20.34Database System Concepts - 7th Edition

Shared-Memory Vs Shared-Nothing

▪ Shared-memory internally looks like shared-nothing!

• Each processor has direct access to its own memory, and indirect

(hardware level) access to rest of memory

• Also called non-uniform memory architecture (NUMA)

▪ Shared-nothing can be made to look like shared memory

• Reduce the complexity of programming such systems by distributed

virtual-memory abstraction

• Remote Direct Memory Access (RDMA) provides very low-latency

shared memory abstraction on shared-nothing systems

▪ Often implemented on top of infiniband due it its very-low-latency

• But careless programming can lead to performance issues

©Silberschatz, Korth and Sudarshan20.35Database System Concepts - 7th Edition

Distributed Systems

▪ Data spread over multiple machines (also referred to as sites or

nodes).

▪ Local-area networks (LANs)

▪ Wide-area networks (WANs)

• Higher latency
site A site C

site B

communication
via network

network

©Silberschatz, Korth and Sudarshan20.36Database System Concepts - 7th Edition

Distributed Databases

▪ Homogeneous distributed databases

• Same software/schema on all sites, data may be partitioned
among sites

• Goal: provide a view of a single database, hiding details of
distribution

▪ Heterogeneous distributed databases

• Different software/schema on different sites

• Goal: integrate existing databases to provide useful functionality

▪ Differentiate between local transactions and global transactions

• A local transaction accesses data in the single site at which the
transaction was initiated.

• A global transaction either accesses data in a site different from
the one at which the transaction was initiated or accesses data in
several different sites.

©Silberschatz, Korth and Sudarshan20.37Database System Concepts - 7th Edition

Data Integration and Distributed

Databases

▪ Data integration between multiple distributed databases

▪ Benefits:

• Sharing data – users at one site able to access the data residing

at some other sites.

• Autonomy – each site is able to retain a degree of control over

data stored locally.

©Silberschatz, Korth and Sudarshan20.38Database System Concepts - 7th Edition

Availability

▪ Network partitioning

▪ Availability of system

• If all nodes are required for system to function, failure of even one node

stops system functioning.

• Higher system availability through redundancy

▪ data can be replicated at remote sites, and system can function

even if a site fails.

©Silberschatz, Korth and Sudarshan20.39Database System Concepts - 7th Edition

Implementation Issues for Distributed

Databases

▪ Atomicity needed even for transactions that update data at multiple

sites

▪ The two-phase commit protocol (2PC) is used to ensure atomicity

• Basic idea: each site executes transaction until just before

commit, and the leaves final decision to a coordinator

• Each site must follow decision of coordinator, even if there is a

failure while waiting for coordinators decision

▪ 2PC is not always appropriate: other transaction models based on

persistent messaging, and workflows, are also used

▪ Distributed concurrency control (and deadlock detection) required

▪ Data items may be replicated to improve data availability

▪ Details of all above in Chapter 24

©Silberschatz, Korth and Sudarshan20.40Database System Concepts - 7th Edition

Cloud Based Services

▪ Cloud computing widely adopted today

• On-demand provisioning and elasticity

▪ ability to scale up at short notice and to release of unused

resources for use by others

▪ Infrastructure as a service

• Virtual machines/real machines

▪ Platform as a service

• Storage, databases, application server

▪ Software as a service

• Enterprise applications, emails, shared documents, etc,

▪ Potential drawbacks

• Security

• Network bandwidth

©Silberschatz, Korth and Sudarshan20.41Database System Concepts - 7th Edition

Cloud Service Models

©Silberschatz, Korth and Sudarshan20.42Database System Concepts - 7th Edition

Application Deployment Alternatives

Individual Machines Virtual Machines Containers

(e.g. VMWare, KVM, ..) (e.g. Docker)

©Silberschatz, Korth and Sudarshan20.43Database System Concepts - 7th Edition

Application Deployment Architectures

▪ Services

▪ Microservice Architecture

• Application uses a variety of services

• Service can add or remove instances as required

▪ Kubernetes supports containers, and microservices

Database System Concepts, 7th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of Chapter 20

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan20.45Database System Concepts - 7th Edition

Figure 17.11

